

NATIONAL SCIENCE FOUNDATION INDUSTRY/UNIVERSITY COOPERATIVE RESEARCH CENTERS

FINAL Report

2021-2022 Structural Information¹

- TABLE 1: GENERAL CENTER INFORMATION
- **TABLE 2:** OPERATING BUDGET: TOTAL FUNDING
- **TABLE 3**: CAPITAL AND IN-KIND SUPPORT
- TABLE 4: INDUSTRY MEMBERSHIP DESCRIPTORS
- **TABLE 5:** HUMAN RESOURCES
- **TABLE 6:** CENTER DIRECTOR DESCRIPTORS
- **TABLE 7:** CENTER OUTCOMES
- **TABLE 8:** ALUMNI CAREER OUTCOMES
- TABLE 9: INTELLECTUAL PROPERTY AND COMMERCIALIZATION EVENTS
- APPENDIX: FOOTNOTES: SPECIAL CONSIDERATIONS
- (Footnotes appear on top of columns and/or at end of rows for each table and are described in the appendix on the last page).

H. Sharitt, C. Archuleta, L.C. McGowen VENTUREWELL

January, 2023

¹NOTE: FY2021-2022 data collected from 80/80 Center Director Surveys (100% response rate)

IUCRC Evaluation Project VentureWell 100 Venture Way Hadley, MA 01035

Phone:	413.587.2172
Fax:	413.587.2175
E-mail	iucrc@venturewell.org
Webpage	https://venturewell.org/

Table 1: 2021-2022 GENERAL CENTER INFORMATION (Sorted Chronologically)**

Yr Started:	Center Name	University Name Director	Partner University 1 Director	Partner University 2 Director	Partner University 3 Director	Partner University 4 Director
ctive						
2001*	Identification Technology Research	Clarkson University Schuckers	West Virginia University Valenti	University at Buffalo Govindaraju	Michigan State University Ross	IDIAP Research Institute (Switzerland)
2007	Advanced Forestry Systems	University of Maine Weiskittel	University of Washington-Seattle Campus Turnblom	University of Idaho Nelson	North Carolina State University at Raleigh Cook	Purdue University-Main Campus Jacobs
2007	Smart Vehicle Concepts	Ohio State University-Main Campus Dapino				
2008	Advanced Knowledge Enablement	Florida International University Rishe	Florida Atlantic University Furht	Dubna International Univ. (Russia) Cheremisina	Univ. of Greenwich (England) MacKinnon	
2008	Cloud & Autonomic Computing	Texas Tech University Chen	University of Arizona Hariri	University of Sonora (Mexico)		
2008	Health Organization Transformation	Texas A & M University Health Science C Kash (Ferris)	Pennsylvania State University-Main Cam Tucker	University of Louisville Johnson (Jennings)		
2008	Particulate and Surfactant Systems	University of Florida Moudgil	Columbia University in the City of New Yo Somasundaran	Dharmsinh Desai Univ. (India) Mukherjee		
2009	Electromagnetic Compatibility	Missouri University of Science and Techn Beetner	University of Houston Chen	University of Hawaii at Manoa Iskander		
2009	Embedded Systems	Arizona State University Vrudhula	Southern Illinois University Carbondale Tragoudas			
2009	Grid-Connected Advanced Power Electronic Systems	University of Arkansas Main Campus Mantooth	University of Wisconsin-Milwaukee Cuzner	Korea Univ.(South Korea) Dougal	Yonsei Univ. (South Korea)	
2009	Integration of Composites into Infrastructure	West Virginia University GangaRao	North Carolina State University at Raleigh Seracino	University of Miami Nanni	Texas A & M University Puppala	
2010	Ceramics Composites and Optical Materials Center	Rutgers University-New Brunswick Haber				
2010	Energy Harvesting Materials and Systems	Virginia Polytechnic Institute and State Un Zuo	Columbia University in the City of New Yo Yin	Pennsylvania State University-Main Cam Rahn		
2010	Membrane Science, Engineering & Technology Center	University of Arkansas Main Campus Wickramasinghe	University of Colorado at Boulder Ding	New Jersey Institute of Technology Sirkar	Pennsylvania State University-Main Cam Zydney	R & D Center for Membrane Research
2010	Resource Recovery and Recycling	Worcester Polytechnic Institute Mishra	Colorado School of Mines Anderson	KU Leuven (Belgium) Blanpain	Univ. of Tokyo (Japan) Fujita	
2010	Security and Software Engineering Research Center	Ball State University Lin	The University of Texas at Dallas Wong			
2010	Surveillance Research	Wright State University-Main Campus Rigling	Ohio State University-Main Campus Potter			
2010	Water Equipment and Policy	University of Wisconsin-Milwaukee Liao	Marquette University Zitomer			
2010	Wood-Based Composites	Virginia Polytechnic Institute and State Un Frazier				
2010*	Manufacturing and Materials Joining Innovation Center	Ohio State University-Main Campus Ramirez	Lehigh University DuPont	Colorado School of Mines Yu	The University of Tennessee Rawn	Pennsylvania State University-Main Ca Palmer

* Report sorted by Status. Organized by Year Started. Starting in 2013-2014 report, centers' Year Funded changed to Year Started. * = Last year funded by NSF. **Blank rows in subsequent tables indicate that data were not provided by the Center.

#International site data not included in this report unless otherwise footnoted.

a) Additional universities for Advanced Forestry Systems include Oregon State University (Gonzalez-Benecke) and University of Georgia (Montes.)

b) Additional universities for Hardware Embedded Systems Security include University of University of Connecticut (Chandy).

Yr Started:	Center Name	University Name Director	Partner University 1 Director	Partner University 2 Director	Partner University 3 Director	Partner University 4 Director
2011	Advanced Non-Ferrous Structural Alloys	Colorado School of Mines Clarke (Kaufman)	Iowa State University Collins			
2011	Energy-Smart Electronic Systems	Binghamton University, SUNY Sammakia	Villanova University Wemhoff	The University of Texas at Arlington Agonafer		
2011	Metamaterials	University of North Carolina at Charlotte Aggarwal	Clarkson University Crouse			
2011	Solar Powered Future	The University of Texas at Austin Korgel	Colorado State University Sampath	Texas A & M University Balog		
2012	Tire Research	Virginia Polytechnic Institute and State Un Taheri	University of Akron Main Campus Choi			
2012	Visual and Decision Informatics	University of Louisiana at Lafayette Raghavan	Stony Brook University Kaufman	University of Virginia-Main Campus Scherer	University of North Carolina at Charlotte Dou	Tampere Univ. (Finland)
2013	Arthropod Management Technologies	University of Florida Bonning	University of Kentucky Palli			
2013	Broadband Wireless Access and Applications	University of Arizona Krunz	North Carolina State University at Raleigh Guvenc	University of Mississippi Main Campus Viswanathan	Catholic University of America Liu	
2013	Cybersecurity Analytics and Automation	George Mason University Jajodia	University of North Carolina at Charlotte Lipford	Colorado State University Ray		
2013	Freeform Optics	University of Rochester Rolland	University of North Carolina at Charlotte Suleski			
2013	Research in Storage Systems	University of California-Santa Cruz Long				
2013	Science Center for Marine Fisheries	University of Southern Mississippi Powell	College of William Mary Virginia Institute f Mann			
2013	Spatiotemporal Thinking, Computing and Application	George Mason University Yang	Harvard University Subramanian			
2013	Unmanned Aircraft Systems	Brigham Young University McLain	University of Colorado at Boulder Frew	Virginia Polytechnic Institute and State Un Woolsey	University of Michigan-Ann Arbor Panagou	
2013	Wheat Genetics	Kansas State University Akhunov				
2014	Advanced Design and Man of Integrated Microfluidics	University of California-Irvine Lee	University of Illinois at Chicago Papautsky			
2014	Bioplastics and Biocomposites	North Dakota State University-Main Camp Grewell	Washington State University Yadama	lowa State University Cochran	University of Georgia Locklin	
2014	Dielectrics and Piezoelectrics	Pennsylvania State University-Main Cam Trolier-McKinstry	North Carolina State University at Raleigh Parsons	University of Sheffield (England)		
2014	Disruptive Muscoloskeletal Innovations	University of California-San Francisco Lotz	University of Toledo-Main Campus Goel	Ohio State University-Main Campus Marras		
2014	iPerform - I/UCRC for Assistive Technologies to Enhance Human Performance	The University of Texas at Arlington Makedon				
2014	Multi-functional Integrated System Technology	University of Florida Nishida	University of Central Florida Yuan	University of Virginia-Main Campus Ghosh		
-						

* Report sorted by Status. Organized by Year Started. Starting in 2013-2014 report, centers' Year Funded changed to Year Started. *= Last year funded by NSF. **Blank rows in subsequent tables indicate that data were not provided by the Center.

#International site data not included in this report unless otherwise footnoted.

a) Additional universities for Advanced Forestry Systems include Oregon State University (Gonzalez-Benecke) and University of Georgia (Montes.) b) Additional universities for Hardware Embedded Systems Security include University of University of Connecticut (Chandy).

Yr Started:	Center Name	University Name Director	Partner University 1 Director	Partner University 2 Director	Partner University 3 Director	Partner University 4 Director
2014	Novel High-Voltage/Temperature Materials and Structures	University of Denver Kumosa	University of Illinois at Urbana-Champaig Jasiuk	Michigan Technological University Odegard	University of Connecticut Cao	
2014	Robots and Sensors for the Human Well-being	University of Minnesota-Twin Cities Morellas	University of Pennsylvania Hsieh	Clemson University Krovi	Worcester Polytechnic Institute Xiao	
2014	Wind Energy Science, Technology and Research	University of Massachusetts-Lowell Niezrecki	The University of Texas at Dallas Rotea			
2015	Atomically Thin Multifunctional Coatings	Pennsylvania State University-Main Cam Terrones	Rice University Lou	Boise State University Estrada		
2015	Fiber-Wireless Integration and Networking	Georgia Institute of Technology-Main Ca Chang	Auburn University Main Campus Mao			
2015	Rational Catalyst Synthesis	University of South Carolina-Columbia Regalbuto	Virginia Commonwealth University Gupton	University of California-Davis Gates		
2016	Advanced Electronics through Machine Learning	University of Illinois at Urbana-Champaig Rosenbaum	Georgia Institute of Technology-Main Ca Swaminathan	North Carolina State University at Raleigh Franzon		
2016	Advanced Mammalian Biomanufacturing Innovation Center	Johns Hopkins University Betenbaugh	Clemson University Harcum	University of Delaware Lee	University of Massachusetts Amherst-Lo Yoon	University of Maryland-College Park Bentley
2016	Advanced Research in Drying	Worcester Polytechnic Institute Yagoobi	University of Illinois at Urbana-Champaig Lee			
2016	Computational Biotechnology and Genomic Medicine	University of Illinois at Urbana-Champaig lyer	Mayo Clinic Wang			
2016	Efficient Vehicles and Sustainable Transportation Systems	Arizona State University Yu	The University of Alabama Hong	University of Louisville Park	The University of Texas at Austin Matthews	
2017	Advanced Research in Forensic Science	Florida International University Cai	University of South Alabama Chambers			
2017	Building Reliable Advances and Innovation in Neurotechnology	Arizona State University Santello	University of Houston Contreras-Vidal	Miguel Hernández Univ. of Elche (Spain)	Tecnologico de Monterrey (Mexico)	
2017	Space, High-Performance, and Resilient Computing	University of Pittsburgh-Pittsburgh Campu George	University of Florida Lam	Brigham Young University Wirthlin	Virginia Polytechnic Institute and State Un Feng	
2018	Accelerated Real Time Analytics	University of Maryland-Baltimore County Joshi	North Carolina State University at Raleigh Chirkova	Rutgers University-Newark Atluri	Rutgers University-New Brunswick Metaxas	University of Miami Ogihara
2018	Advance the Science of Exploration to Reclamation in Mining	Colorado School of Mines Monecke	Virginia Polytechnic Institute and State Un Westman			
2018	Alternative Sustainable and Intelligent Computing	Chen	Syracuse University Qiu	University of Notre Dame Shi		
2018	Big Learning	University of Florida Harley	University of Missouri-Kansas City Lu	University of Oregon Nguyen		
2018	Geomechanics and Mitigation of Geohazards	California Institute of Technology Avouac				
2018	High Pressure Plasma Energy, Agriculture, and Biomedical Technologies	Drexel University Fridman	George Washington University Keidar	University of Michigan-Ann Arbor Foster	Plasma Bioscience Research Center (Kor	
2018	Power Management Integration	Dartmouth College Sullivan	University of California-San Diego Mercier			

* Report sorted by Status. Organized by Year Started. Starting in 2013-2014 report, centers' Year Funded changed to Year Started. *= Last year funded by NSF. **Blank rows in subsequent tables indicate that data were not provided by the Center.

#International site data not included in this report unless otherwise footnoted.

a) Additional universities for Advanced Forestry Systems include Oregon State University (Gonzalez-Benecke) and University of Georgia (Montes.)

b) Additional universities for Hardware Embedded Systems Security include University of University of Connecticut (Chandy).

Yr Started:	Center Name	University Name Director	Partner University 1 Director	Partner University 2 Director	Partner University 3 Director	Partner University 4 Director
2018	Science of Heterogeneous Additive Printing of 3D Materials	University of Massachusetts-Lowell Mead	University of Connecticut Ma	Georgia Institute of Technology-Main Ca Qi		
2019	Bioanalytic Metrology	University of Notre Dame Bohn	Indiana University-Bloomington Jacobson	Purdue University-Main Campus Simpson		
2019	Hardware and Embedded Systems Security and Trust	University of Cincinnati-Main Campus Emmert	Northeastern University Fei	The University of Texas at Dallas Makris	University of Virginia-Main Campus Lambert	University of California-Davis Homayoun
2019	Wind Hazard and Infrastructure Performance	Texas Tech University Mehta (Zuo)	Florida International University Zisis			
2020	Pervasive Personalized Intelligence	University of Colorado at Boulder Dig	Oregon State University Wong			
2021	Building Energy Smart Technology	University of Colorado at Boulder Krarti	CUNY City College Gonzalez			
2021	Composite and Hybrid Materials Interfacing	Georgia Institute of Technology-Main Ca Zhang	The University of Tennessee Vaidya	Oakland University Nassar		
2021	Electronic-Photonic Integrated Circuits for Aerospace	Georgia Institute of Technology-Main Ca Ralph	Vanderbilt University Reed	University of Centeral Florida Delfyett		
2021	Environmental Sustainability through Insect Farming	Texas A & M University Tomberlin	Indiana University-Bloomington Picard	Mississippi State University Jordan		
2021	High-Frequency Electronics and Circuits for Communication Systems	University of Arkansas Main Campus El-Ghazaly	Florida International University Volakis	The University of Tennessee Fathy		
2021	Infrastructure Trustworthiness in Energy Systems	University of Illinois at Urbana-Champaig Nicol	University of Arkansas Main Campus Li	Florida International University Mohammed		
2021	Innovations in Structural Integrity Assurance	Louisiana State University and Agricultura Khonsari	Louisiana Tech University Matthews			
2021	Materials Data Science for Reliability and Degradation	Case Western Reserve University French	University of Pittsburgh-Pittsburgh Campu Leu			
2021	Research toward Advancing Financial Technologies	Stevens Institute of Technology Yang	Rensselaer Polytechnic Institute Gupta			
2021	Science, Management, Applications, Regulation, and Training	Georgetown University Frieder	University of Notre Dame Nabrzyski			
2021	Solid-State Green Electric Power Generation and Storage	South Dakota School of Mines and Techn Smirnova	Syracuse University Qiao	Northeastern University Mukerjee		
2021	Stream Healthcare In Place	University of Arizona Roveda	Baylor College of Medicine Najafi	University of Southern California Armstrong	California Institute of Technology Daraio	
2021	Wildfire Interdisciplinary Research Center	San Jose State University Clements	- 4*	···· J		

* Report sorted by Status. Organized by Year Started. Starting in 2013-2014 report, centers' Year Funded changed to Year Started. *= Last year funded by NSF.

**Blank rows in subsequent tables indicate that data were not provided by the Center.

#International site data not included in this report unless otherwise footnoted.

a) Additional universities for Advanced Forestry Systems include Oregon State University (Gonzalez-Benecke) and University of Georgia (Montes.) b) Additional universities for Hardware Embedded Systems Security include University of University of Connecticut (Chandy).

Table 2: 2021-2022 OPERATING BUDGET AND TOTAL FUNDING

	gram Income		Member ⁶	Add'l 7	Other ⁸	9	Other ¹⁰	Non- 11
Center Name + N	NSF/IUCRC	IUCRC	Fees	Industry	NSF	State '	Federal	Federal
^ Advanced Knowledge Enablement	\$455,000	\$0	\$430,000	\$25,000	\$2,500,000	\$0	\$500,000	\$500,000
^ Advanced Research in Forensic S	\$718,000	\$443,000	\$275,000	\$0	\$0	\$0	\$0	\$0
^ Ceramics Composites and Optical	\$535,391	\$0	\$535,391	\$0	\$0	\$0	\$0	\$0
^ Computational Biotechnology and	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
^ Health Organization Transformati	\$225,000	\$0	\$225,000	\$0	\$0	\$0	\$0	\$0
^ Novel High-Voltage/Temperature	\$120,000	\$0	\$120,000	\$0	\$0	\$0	\$0	\$0
Smart Vehicle Concepts	\$836,640	\$153,160	\$683,480	\$0	\$0	\$0	\$0	\$0
^ Unmanned Aircraft Systems	\$1,401,000	\$616,000	\$785,000	\$0	\$0	\$0	\$0	\$0
Accelerated Real Time Analytics	\$1,349,638	\$600,000	\$749,638	\$0	\$0	\$0	\$0	\$0
Advance the Science of Exploration	\$1,550,469	\$609,531	\$850,000	\$90,938	\$0	\$0	\$0	\$0
Advanced Design and Man of Integr	\$839,190	\$539,190	\$300,000	\$0	\$0	\$0	\$0	\$0
Advanced Electronics through Mach	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Advanced Forestry Systems	\$2,665,171	\$700,000	\$1,965,171	\$0	\$250,000	\$0	\$0	\$0
Advanced Mammalian Biomanufact	\$1,913,500	\$268,000	\$1,645,500	\$0	\$0	\$0	\$0	\$0
Advanced Non-Ferrous Structural Al	\$643,000	\$24,000	\$619,000	\$0	\$0	\$0	\$1,543,500	\$0
Advanced Research in Drying	\$501,000	\$16,000	\$485,000	\$0	\$0	\$0	\$0	\$0
Alternative Sustainable and Intellige	\$900,000	\$150,000	\$750,000	\$0	\$0	\$0	\$0	\$0
Arthropod Management Technologi	\$833,000	\$198,000	\$635,000	\$0	\$120,000	\$53,903	\$0	\$0
Atomically Thin Multifunctional Coat	\$750,000	\$120,000	\$630,000	\$0	\$0	\$0	\$0	\$0
Big Learning	\$1,000,000	\$500,000	\$500,000	\$0	\$0	\$0	\$0	\$0
Bioanalytic Metrology	\$1,176,000	\$600,000	\$550,000	\$26,000	\$0	\$0	\$0	\$0
Bioplastics and Biocomposites	\$1,570,000	\$400,000	\$1,170,000	\$0	\$0	\$0	\$0	\$0
Broadband Wireless Access and Ap	\$1,306,000	\$413,500	\$562,500	\$330,000	\$0	\$30,000	\$0	\$0
Building Energy Smart Technology	\$386,000	\$16,000	\$365,000	\$5,000	\$0	\$0	\$0	\$0
Building Reliable Advances and Inn	\$248,500	\$0	\$248,500	\$0	\$0	\$0	\$0	\$0
Cloud & Autonomic Computing	\$525,000	\$100,000	\$425,000	\$0	\$0	\$0	\$0	\$35,000
Composite and Hybrid Materials Int	\$885,000	\$450,000	\$435,000	\$0	\$0	\$0	\$0	\$0
Cybersecurity Analytics and Autom	\$600,000	\$300,000	\$300,000	\$0	\$0	\$0	\$0	\$0
Dielectrics and Piezoelectrics	\$909,178	\$78,859	\$830,319	\$0	\$0	\$0	\$0	\$0
Disruptive Muscoloskeletal Innovati	\$625,000	\$100,000	\$525,000	\$0	\$0	\$0	\$0	\$0
Efficient Vehicles and Sustainable T	\$500,000	\$0	\$500,000	\$0	\$0	\$0	\$0	\$0
Electromagnetic Compatibility	\$1,519,000	\$100,000	\$1,419,000	\$0	\$0	\$0	\$70,000	\$0
Electronic-Photonic Integrated Circu	\$1,050,000	\$450,000	\$600,000	\$0	\$0	\$0	\$100,000	\$500,000
Embedded Systems	\$75,000	\$0	\$75,000	\$0	\$0	\$0	\$0	\$0
Energy Harvesting Materials and Sy	\$629,878	\$0	\$629,878	\$0	\$0	\$0	\$0	\$0
Energy-Smart Electronic Systems	\$1,452,133	\$368,000	\$1,084,133	\$0	\$0	\$208,000	\$75,000	\$475,000
Environmental Sustainability throug	\$862,481	\$447,481	\$415,000	<u> </u>	\$0	<u>φ200,000</u> \$0	\$0	φ <u></u> \$0
Fiber-Wireless Integration and Netw	\$0 \$0	\$0	φ+10,000 \$0	\$0	\$0	\$0	\$0	\$0
Freeform Optics	\$955,999	\$307,999	\$648,000	\$0	\$0	\$0	<u> </u>	\$0
Geomechanics and Mitigation of Ge	\$924,929	\$174,000	\$375,000	\$375,929	\$0	\$0 \$0	\$0 \$0	\$375,929
Grid-Connected Advanced Power E	\$658,988	\$223,988	\$425,000	\$10,000	\$0	\$0 \$0	<u>\$0</u> \$0	\$075,929 \$0
Hardware and Embedded Systems	\$1,225,000	\$150,000	\$1,075,000	\$10,000	\$0	\$0 \$0	پر \$740,628	\$0 \$0
High Pressure Plasma Energy, Agri	\$1,010,500	\$510,500	\$500,000	<u>\$0</u> \$0	\$0	<u>\$0</u> \$0	\$740,020 \$0	\$0 \$0
High-Frequency Electronics and Cir	\$1,010,500 \$750,000	\$450,000	\$300,000	<u>\$0</u> \$0	\$0	\$0 \$0	<u>\$0</u> \$0	<u>\$0</u> \$0
Identification Technology Research			\$300,000		\$0 \$1,066,666		ە 0 \$2,387,083	
identification rechnology Research	\$1,626,552	\$575,221	, 94∠4,000	\$627,331	φ1,000,000	\$80,000	φ ∠, 307,003	\$90,000

* Report sorted Alphabetically by Center
** ^ denotes centers on no cost extension, they did not receive any additional NSF IUCRC funding during the reporting period.

	gram Incom NSF/IUCRC		Member ⁶ Fees	Add'l ⁷ Industry	Other ⁸ NSF	State ⁹	Other ¹⁰ Federal	Non- ¹¹ Federal
Innovations in Structural Integrity As	\$650,000	\$300,000	\$350,000	\$0	\$0	\$0	\$0	\$0
Integration of Composites into Infra	\$1,130,277	\$106,997	\$1,023,280	\$0	\$200,000	\$0	\$0	\$0
iPerform - I/UCRC for Assistive Tec	\$162,000	\$16,000	\$146,000	\$0	\$218,000	\$0	\$0	\$146,000
Manufacturing and Materials Joinin	\$1,807,792	\$100,000	\$1,707,792	\$0	\$90,823	\$0	\$0	\$0
Materials Data Science for Reliabilit	\$356,495	\$43,800	\$312,695	\$0	\$0	\$0	\$0	\$0
Membrane Science, Engineering &	\$2,082,546	\$1,112,546	\$970,000	\$0	\$0	\$0	\$0	\$0
Metamaterials	\$503,332	\$50,000	\$430,000	\$23,332	\$0	\$0	\$0	\$0
Multi-functional Integrated System T	\$797,382	\$397,382	\$400,000	\$0	\$0	\$0	\$0	\$0
Particulate and Surfactant Systems	\$35,000	\$0	\$35,000	\$0	\$0	\$0	\$0	\$0
Pervasive Personalized Intelligence	\$675,000	\$300,000	\$375,000	\$0	\$0	\$0	\$0	\$0
Power Management Integration	\$675,000	\$225,000	\$450,000	\$0	\$0	\$0	\$0	\$0
Rational Catalyst Synthesis	\$750,000	\$100,000	\$650,000	\$0	\$0	\$0	\$0	\$0
Research in Storage Systems	\$450,000	\$100,000	\$350,000	\$0	\$0	\$0	\$200,000	\$0
Research toward Advancing Financi	\$875,000	\$300,000	\$575,000	\$0	\$0	\$0	\$0	\$0
Resource Recovery and Recycling	\$650,000	\$50,000	\$600,000	\$0	\$0	\$0	\$0	\$0
Robots and Sensors for the Human	\$1,067,000	\$455,000	\$612,000	\$0	\$0	\$0	\$0	\$0
Science Center for Marine Fisheries	\$568,086	\$143,086	\$425,000	\$0	\$396,469	\$0	\$0	\$375,788
Science of Heterogeneous Additive	\$1,002,843	\$512,843	\$490,000	\$0	\$0	\$0	\$0	\$0
Science, Management, Applications	\$745,000	\$300,000	\$425,000	\$20,000	\$0	\$0	\$0	\$0
Security and Software Engineering	\$45,000	\$0	\$45,000	\$0	\$0	\$0	\$0	\$0
Solar Powered Future	\$1,073,333	\$265,000	\$808,333	\$0	\$0	\$0	\$0	\$0
Solid-State Green Electric Power G	\$470,000	\$20,000	\$450,000	\$0	\$0	\$300,000	\$0	\$0
Space, High-Performance, and Resi	\$1,606,000	\$166,000	\$1,440,000	\$0	\$0	\$0	\$0	\$0
Spatiotemporal Thinking, Computin	\$1,100,900	\$487,000	\$613,900	\$0	\$235,000	\$0	\$55,000	\$0
Stream Healthcare In Place	\$930,000	\$200,000	\$730,000	\$0	\$0	\$100,000	\$500,000	\$0
Surveillance Research	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Tire Research	\$679,983	\$99,983	\$580,000	\$0	\$0	\$0	\$0	\$0
Visual and Decision Informatics	\$833,100	\$383,100	\$450,000	\$0	\$0	\$0	\$0	\$0
Water Equipment and Policy	\$539,219	\$39,219	\$500,000	\$0	\$0	\$0	\$0	\$0
Wheat Genetics	\$500,000	\$100,000	\$400,000	\$0	\$0	\$0	\$1,500,000	\$0
Wildfire Interdisciplinary Research	\$749,954	\$149,954	\$600,000	\$0	\$0	\$0	\$1,150,000	\$0
Wind Energy Science, Technology	\$768,568	\$219,399	\$549,169	\$0	\$0	\$0	\$0	\$0
Wind Hazard and Infrastructure Perf	\$600,000	\$300,000	\$300,000	\$0	\$0	\$0	\$0	\$0
Wood-Based Composites	\$315,000	\$0	\$315,000	\$0	\$0	\$0	\$0	\$0
Grand Mean	\$808,762	\$233,059	\$556,533	\$19,169	\$63,462	\$9,649	\$110,265	\$31,221
Grand Sum	\$64,700,947	\$18,644,738	\$44,522,679	\$1,533,530	\$5,076,958	\$771,903	\$8,821,211	\$2,497,717

* Report sorted Alphabetically by Center ** ^ denotes centers on no cost extension, they did not receive any additional NSF IUCRC funding during the reporting period.

Table 3: 2021-2022 CAPITAL AND IN-KIND SUPPORT

				Car	oital and	In-Kind Su	innort ¹²		
Center Name	Program In + NSF/IU		Total Cap In-Kind	Equip-		s Personnel		Other Support	Admin ¹³ Budget
Accelerated Real Time Analytics	\$1,34	9.638	\$0	\$0	\$0	\$0	\$0	\$0	31
Advance the Science of Exploration to			\$0	\$0	\$0	\$0	\$0	\$0	3
Advanced Design and Man of Integrate		9,190	\$125,000	\$0	\$0	\$0	\$50,000	\$75,000	30
Advanced Electronics through Machin		\$0	\$0	\$0	\$0	\$0	\$0	\$0	0
Advanced Forestry Systems	\$2,66		\$0	\$0	\$0	\$0	\$0	\$0	17
Advanced Knowledge Enablement		5,000	\$130,000	<u>\$0</u>	\$0	\$90,000	\$40,000	\$0	0
Advanced Mammalian Biomanufacturi			\$0	<u>\$0</u>	\$0	<u>\$00,000</u>	\$0	\$0	19
Advanced Non-Ferrous Structural Allo	0	3,000	\$0 \$0	\$0 \$0	\$0 \$0	\$0	\$0	\$0 \$0	6
Advanced Research in Drying		1,000	\$0 \$0	\$0 \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	\$0 \$0	\$0 \$0	18
dvanced Research in Forensic Scien		8,000	\$0 \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	\$0 \$0	<u>\$0</u> \$0	10
Iternative Sustainable and Intelligent		0,000	\$0 \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	29
				پە 0 \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0		14
Arthropod Management Technologies		3,000	\$0					\$0	
tomically Thin Multifunctional Coating		0,000	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	31
lig Learning	\$1,00	1	\$0 \$550.000		\$0 \$0	\$0\$0	\$0 \$0	\$0	27
Bioanalytic Metrology	\$1,17		\$550,000	\$550,000	\$0 \$0	\$0\$0	\$0 \$0	\$0	34
tioplastics and Biocomposites	\$1,57	,	\$0	\$0 \$0	\$0 \$0	\$0	\$0 \$0	\$0	26 22
Broadband Wireless Access and Appli			\$0	\$0	\$0	\$0	\$0	\$0	
Building Energy Smart Technology		6,000	\$0	\$0	\$0	\$0	\$0	\$0	14
uilding Reliable Advances and Innov		8,500	\$0	\$0	\$0	\$0	\$0	\$0	44
eramics Composites and Optical Ma		5,391	\$0	\$0	\$0	\$0	\$0	\$0	0
loud & Autonomic Computing		5,000	\$0	\$0	\$0	\$0	\$0	\$0	4
omposite and Hybrid Materials Interfa		5,000	\$0	\$0	\$0	\$0	\$0	\$0	20
computational Biotechnology and Ger		\$0	\$0	\$0	\$0	\$0	\$0	\$0	0
ybersecurity Analytics and Automatic		0,000	\$0	\$0	\$0	\$0	\$0	\$0	38
ielectrics and Piezoelectrics	\$90	9,178	\$25,200	\$25,200	\$0	\$0	\$0	\$0	11
isruptive Muscoloskeletal Innovation	s \$62	5,000	\$0	\$0	\$0	\$0	\$0	\$0	41
fficient Vehicles and Sustainable Tra	nspo \$50	0,000	\$0	\$0	\$0	\$0	\$0	\$0	48
lectromagnetic Compatibility	\$1,51	9,000	\$75,000	\$75,000	\$0	\$0	\$0	\$0	4
Electronic-Photonic Integrated Circuits	for \$1,05	0,000	\$1,261,250	\$0	\$0	\$0	\$1,000,000	\$261,250	20
mbedded Systems	\$7	5,000	\$0	\$0	\$0	\$0	\$0	\$0	2
nergy Harvesting Materials and Syste	ems \$62	9,878	\$0	\$0	\$0	\$0	\$0	\$0	32
nergy-Smart Electronic Systems	\$1,45	2,133	\$1,411,383	1,226,383	\$185,000	\$0	\$0	\$0	1
nvironmental Sustainability through I	nsec \$86	2,481	\$0	\$0	\$0	\$0	\$0	\$0	21
iber-Wireless Integration and Networ	king	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0
reeform Optics	\$95	5,999	\$48,000	\$0	\$0	\$0	\$0	\$48,000	26
eomechanics and Mitigation of Geoh	azar \$92	4,929	\$400,000	\$400,000	\$0	\$0	\$0	\$0	19
rid-Connected Advanced Power Elec		8,988	\$17,250	\$17,250	\$0	\$0	\$0	\$0	20
ardware and Embedded Systems Se			\$10,000	\$0	\$0	\$10,000	\$0	\$0	32
ealth Organization Transformation		5,000	\$0	\$0	\$0	\$0	\$0	\$0	12
igh Pressure Plasma Energy, Agricu			\$0	\$0	\$0	\$0	\$0	\$0	20
igh-Frequency Electronics and Circu		0,000	\$0	\$0	\$0	\$0	\$0	\$0	12
lentification Technology Research	\$1,62		\$0	\$0	\$0	\$0	\$0	\$0	8
frastructure Trustworthiness in Energy		0,000	\$0 \$0	\$0	\$0	\$0 \$0	\$0	\$0 \$0	43
movations in Structural Integrity Assu		0,000	\$0 \$0	<u>\$0</u>	<u>\$0</u> \$0	<u>\$0</u> \$0	\$0 \$0	<u>\$0</u> \$0	45
itegration of Composites into Infrastru			\$0 \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	<u>\$0</u> \$0	40 5
	μοιαι φι,ΙΟ								1
	cloa ¢16	2 000	¢510 000	©200 000	©3UU UUU	C30 000			
Perform - I/UCRC for Assistive Techr fanufacturing and Materials Joining Ir		2,000	\$540,000 \$2,871,123	\$200,000 \$134,531	\$300,000 \$78,000	\$30,000 \$0	\$0 \$973,627	\$10,000 \$1,684,965	19

* Report sorted Alphabetically by Center

_			Cap	oital and	In-Kind Su	pport ¹²		4	
	Program Income + NSF/IUCRC	Total Cap In-Kind	Equip- ment	Facilities	Personnel	Software	Other Support	Admin ¹³ Budget	
Membrane Science, Engineering & Tech	ino \$2,082,546	\$0	\$0	\$0	\$0	\$0	\$0	7	
Metamaterials	\$503,332	\$0	\$0	\$0	\$0	\$0	\$0	2	
Multi-functional Integrated System Techn	nol \$797,382	\$0	\$0	\$0	\$0	\$0	\$0	10	
Novel High-Voltage/Temperature Materia	als \$120,000	\$0	\$0	\$0	\$0	\$0	\$0	5	
Particulate and Surfactant Systems	\$35,000	\$0	\$0	\$0	\$0	\$0	\$0	2	
Pervasive Personalized Intelligence	\$675,000	\$0	\$0	\$0	\$0	\$0	\$0	10	
Power Management Integration	\$675,000	\$0	\$0	\$0	\$0	\$0	\$0	19	
Rational Catalyst Synthesis	\$750,000	\$0	\$0	\$0	\$0	\$0	\$0	16	
Research in Storage Systems	\$450,000	\$0	\$0	\$0	\$0	\$0	\$0	12	
Research toward Advancing Financial To	ec \$875,000	\$106,562	\$0	\$0	\$74,456	\$0	\$32,106	23	
Resource Recovery and Recycling	\$650,000	\$0	\$0	\$0	\$0	\$0	\$0	7	
Robots and Sensors for the Human Well	-b \$1,067,000	\$0	\$0	\$0	\$0	\$0	\$0	6	
Science Center for Marine Fisheries	\$568,086	\$0	\$0	\$0	\$0	\$0	\$0	9	
Science of Heterogeneous Additive Print	tin \$1,002,843	\$0	\$0	\$0	\$0	\$0	\$0	26	
Science, Management, Applications, Re	gul \$745,000	\$0	\$0	\$0	\$0	\$0	\$0	12	
Security and Software Engineering Rese	ar \$45,000	\$26,080	\$0	\$6,000	\$20,080	\$0	\$0	44	
Smart Vehicle Concepts	\$836,640	\$90,000	\$0	\$0	\$0	\$60,000	\$30,000	6	
Solar Powered Future	\$1,073,333	\$0	\$0	\$0	\$0	\$0	\$0	1	
Solid-State Green Electric Power Genera	ati \$470,000	\$0	\$0	\$0	\$0	\$0	\$0	25	
Space, High-Performance, and Resilient	C \$1,606,000	\$0	\$0	\$0	\$0	\$0	\$0	21	
Spatiotemporal Thinking, Computing and	A \$1,100,900	\$3,425,535	3,425,535	\$0	\$0	\$0	\$0	14	
Stream Healthcare In Place	\$930,000	\$900,000	\$200,000	\$200,000	\$300,000	\$100,000	\$100,000	11	
Surveillance Research	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0	
Tire Research	\$679,983	\$0	\$0	\$0	\$0	\$0	\$0	27	
Unmanned Aircraft Systems	\$1,401,000	\$0	\$0	\$0	\$0	\$0	\$0	14	
Visual and Decision Informatics	\$833,100	\$0	\$0	\$0	\$0	\$0	\$0	12	
Water Equipment and Policy	\$539,219	\$0	\$0	\$0	\$0	\$0	\$0	5	
Wheat Genetics	\$500,000	\$0	\$0	\$0	\$0	\$0	\$0	6	
Wildfire Interdisciplinary Research Center	er \$749,954	\$0	\$0	\$0	\$0	\$0	\$0	3	
Wind Energy Science, Technology and F	Re \$768,568	\$0	\$0	\$0	\$0	\$0	\$0	15	
Wind Hazard and Infrastructure Performa	an \$600,000	\$0	\$0	\$0	\$0	\$0	\$0	37	
Wood-Based Composites	\$315,000	\$0	\$0	\$0	\$0	\$0	\$0	31	
Grand Mean	\$808,762	\$150,155	\$78,174	\$9,613	\$6,557	\$27,795	\$28,017	17.36	
Grand Sum	\$64,700,947		\$6,253,899		\$524,536	\$2,223,627	\$2,241,321	N/A	

Table 4: 2021-2022 INDUSTRY MEMBERSHIP DESCRIPTORS

		022 MEM		L	LIFETIME	MEMBE	ERSHIP	S^{14} AN	NUAL F	EES ¹⁵
Center Name	Current	Starting	New	Left	Starting	New	Left	Primary S	econdary	Tertiary
Accelerated Real Time Analytics	19	21	1	3	11	17	6	\$50,000	\$25,000	
Advance the Science of Exploration to	23	8	15	0	7	26	1	\$50,000	\$25,000	
Advanced Design and Man of Integrate	e 10	11	0	1	13	24	14	\$50,000		
Advanced Electronics through Machine		9	0	0	12	17	7	\$50,000		
Advanced Forestry Systems	103	102	1	0	68	291	187	\$25,000	\$12,500	
Advanced Knowledge Enablement	43	38	5	0	10	100	60	\$50,000	\$5,000	
Advanced Mammalian Biomanufacturin	n 30	30	0	0	16	31	2	\$55,000		
Advanced Non-Ferrous Structural Alloy		13	2	0	9	27	12	\$54,000	\$18,000	
Advanced Research in Drying	12	11	3	2	9	19	6	\$50,000	\$25,000	\$5,000
Advanced Research in Forensic Science	c 8	10	0	2	17	26	20	\$25,000	\$5,000	
Alternative Sustainable and Intelligent	11	12	0	1	14	19	8	\$50,000		
Arthropod Management Technologies	12	12	0	0	7	16	4	\$55,000	\$30,000	
Atomically Thin Multifunctional Coating	j 12	5	7	0	12	23	11	\$45,000	\$22,500	
Big Learning	12	8	6	2	26	38	25	\$50,000	\$25,000	
Bioanalytic Metrology	12	13	1	2	12	14	2	\$50,000	\$25,000	
Bioplastics and Biocomposites	28	29	7	8	31	61	33	\$30,000	\$15,000	
Broadband Wireless Access and Applic	c 13	12	4	3	16	45	31	\$50,000	\$25,000	
Building Energy Smart Technology	11	0	11	0	11	11	0	\$50,000	\$25,000	
Building Reliable Advances and Innova	a 8	8	0	0	11	17	12	\$50,000	\$25,000	
Ceramics Composites and Optical Mat	7	9	0	2	19	33	27	\$40,000	\$15,000	
Cloud & Autonomic Computing	10	11	0	1	13	61	39	\$50,000	\$25,000	
Composite and Hybrid Materials Interfa	a 13	0	13	0	13	13	0	\$30,000	\$15,000	
Computational Biotechnology and Gen	3	3	0	0	7	10	7	\$50,000		
Cybersecurity Analytics and Automatio	8	9	3	4	7	21	14	\$50,000		
Dielectrics and Piezoelectrics	26	25	1	0	24	38	13	\$37,800	\$12,600	
Disruptive Muscoloskeletal Innovations	s 10	8	3	1	7	26	26	\$40,000		
Efficient Vehicles and Sustainable Tran	n 11	11	1	1	18	31	21	\$50,000		
Electromagnetic Compatibility	30	40	4	14	15	112	72	\$70,000	\$35,000	
Electronic-Photonic Integrated Circuits	13	0	13	0	13	13	0	\$50,000		
Embedded Systems	1	7	0	6	7	41	40	\$50,000	\$25,000	\$5,000
Energy Harvesting Materials and Syste	e 16	11	6	1	11	45	29	\$40,000	\$20,000	
Energy-Smart Electronic Systems	30	28	2	0	15	60	31	\$50,000	\$25,000	
Environmental Sustainability through Ir	า 15	0	15	0	15	15	0	\$50,000	\$25,000	
Fiber-Wireless Integration and Network	ki 7	7	0	0	9	18	9	\$100,000	\$50,000	\$25,000
Freeform Optics	16	20	2	6	7	39	22	\$48,000	\$24,000	
Geomechanics and Mitigation of Geoh	9	8	2	1	10	13	4	\$50,000	\$25,000	
Grid-Connected Advanced Power Elec		16	5	2	17	49	30	\$40,000	\$5,000	
Hardware and Embedded Systems See	c 23	25	1	3	24	31	7	\$50,000	\$25,000	
Health Organization Transformation	6	8	2	4	10	71	65	\$50,000	\$25,000	
High Pressure Plasma Energy, Agricult		14	0	0	9	16	1	\$50,000	-	
High-Frequency Electronics and Circuit		0	10	0	10	10	0	\$50,000	\$25,000	\$10,000
Identification Technology Research	20	17	4	1	8	81	68	\$50,000	\$10,000	,
Infrastructure Trustworthiness in Energ		0	8	0	8	8	0	\$50,000	\$25,000	
Innovations in Structural Integrity Assu		0	8	0	8	8	0	\$50,000	\$25,000	
Integration of Composites into Infrastru		37	6	2	15	106	68	\$30,000	\$15,000	\$5,000
iPerform - I/UCRC for Assistive Techn		2	0	0	8	14	7	\$50,000	\$20,000	+-,•••
Manufacturing and Materials Joining In		52	3	8	25	105	63	\$55,000	\$27,500	
		~~	.	<u> </u>	20		50	\$00,000	Ψ_1,000	EV 0004 0000

* Report sorted Alphabetically by Center

	2021-20	22 MEM	BERSH	HIPS	LIFETIME	MEMBI	ERSHIP	S ¹⁴ AN	NUAL F	EES ¹⁵
Center Name	Current	Starting	New	Left	Starting	New	Left	Primary S	econdary	Tertiary
Materials Data Science for Reliability a	a 7	0	7	0	7	7	0	\$50,000	\$25,000	
Membrane Science, Engineering & Te	c 16	17	2	3	8	37	25	\$60,000	\$30,000	
Metamaterials	9	9	0	0	8	22	15	\$45,000	\$25,000	
Multi-functional Integrated System Tec	; 7	10	1	4	10	32	23	\$50,000	\$25,000	
Novel High-Voltage/Temperature Mate	er 10	10	0	0	13	27	16	\$40,000	\$20,000	
Particulate and Surfactant Systems	2	2	0	0	43	70	67	\$35,000	\$15,000	
Pervasive Personalized Intelligence	5	3	2	0	7	5	0	\$75,000	\$37,500	
Power Management Integration	11	6	5	0	2	13	3	\$50,000	\$25,000	
Rational Catalyst Synthesis	12	14	2	4	7	22	11	\$50,000	\$25,000	
Research in Storage Systems	10	9	3	2	10	28	18	\$50,000	\$15,000	
Research toward Advancing Financial	17	0	17	0	17	17	0	\$50,000	\$25,000	
Resource Recovery and Recycling	13	14	0	1	14	50	37	\$40,000		
Robots and Sensors for the Human W	e 11	8	4	1	15	48	33	\$35,000	\$10,000	
Science Center for Marine Fisheries	14	14	0	0	9	17	4	\$50,000	\$25,000	
Science of Heterogeneous Additive Pr	i 13	11	3	1	10	19	6	\$50,000	\$15,000	\$5,000
Science, Management, Applications, F	R 7	0	7	0	7	7	0	\$50,000	\$25,000	
Security and Software Engineering Re	s 2	11	0	9	20	74	75	\$40,000	\$5,000	
Smart Vehicle Concepts	17	18	0	1	14	54	37	\$66,000	\$20,000	\$10,000
Solar Powered Future	17	14	13	10	6	54	37	\$50,000	\$25,000	
Solid-State Green Electric Power Gen	e 11	11	0	0	11	0	0	\$50,000	\$25,000	
Space, High-Performance, and Resilie	n 22	34	6	18	35	65	45	\$40,000		
Spatiotemporal Thinking, Computing a	9	10	2	3	10	42	29	\$50,000		
Stream Healthcare In Place	14	0	14	0	14	14	0	\$50,000	\$25,000	
Surveillance Research	10	10	0	0	8	18	8	\$50,000	\$25,000	
Tire Research	19	19	0	0	18	25	16	\$40,000	\$20,000	
Unmanned Aircraft Systems	14	14	0	0	9	41	28	\$44,000		
Visual and Decision Informatics	9	9	3	3	17	49	40	\$50,000	\$20,000	
Water Equipment and Policy	11	12	1	2	6	29	20	\$50,000	\$25,000	
Wheat Genetics	8	8	0	0	12	16	8	\$50,000	\$20,000	
Wildfire Interdisciplinary Research Cer	nt 12	0	12	0	12	12	0	\$50,000		
Wind Energy Science, Technology and	d 15	13	2	0	10	23	8	\$44,944	\$16,854	\$5,000
Wind Hazard and Infrastructure Perfor	6	6	1	1	6	8	2	\$50,000		
Wood-Based Composites	10	13	1	4	8	26	17	\$35,000		
Grand Mean	14.80	13.11	3.54	1.85	13.34	36.01	21.65	\$48,247	\$21,848	\$8,750
Grand Sum	1184	1049	283	148	1067	2881	1732			

RESEARCHERS **STUDENTS** Facultv¹⁶ Research Admin-Under-**Center** Name Scientists Staff **Post Docs** istrative **PhD** Masters graduate Accelerated Real Time Analytics Advance the Science of Exploration to Reclamation in Min Advanced Design and Man of Integrated Microfluidics Advanced Electronics through Machine Learning Advanced Forestry Systems Advanced Knowledge Enablement Advanced Mammalian Biomanufacturing Innovation Cente Advanced Non-Ferrous Structural Alloys Advanced Research in Drving Advanced Research in Forensic Science

Table 5: 2021-2022 HUMAN RESOURCES

Alternative Sustainable and Intelligent Computing Arthropod Management Technologies Atomically Thin Multifunctional Coatings **Big Learning Bioanalytic Metrology Bioplastics and Biocomposites** Broadband Wireless Access and Applications Building Energy Smart Technology Building Reliable Advances and Innovation in Neurotechn Ceramics Composites and Optical Materials Center Cloud & Autonomic Computing Composite and Hybrid Materials Interfacing Computational Biotechnology and Genomic Medicine Cybersecurity Analytics and Automation **Dielectrics and Piezoelectrics Disruptive Muscoloskeletal Innovations** Efficient Vehicles and Sustainable Transportation System Electromagnetic Compatibility Electronic-Photonic Integrated Circuits for Aerospace Embedded Systems Energy Harvesting Materials and Systems Energy-Smart Electronic Systems Environmental Sustainability through Insect Farming Fiber-Wireless Integration and Networking Freeform Optics Geomechanics and Mitigation of Geohazards Grid-Connected Advanced Power Electronic Systems Hardware and Embedded Systems Security and Trust Health Organization Transformation High Pressure Plasma Energy, Agriculture, and Biomedica High-Frequency Electronics and Circuits for Communicati Identification Technology Research Infrastructure Trustworthiness in Energy Systems Innovations in Structural Integrity Assurance Integration of Composites into Infrastructure iPerform - I/UCRC for Assistive Technologies to Enhance Manufacturing and Materials Joining Innovation Center

*Reports sorted Alphabetically by Center.

IUCRC Structure Database, FY 2021-2022

	RE	SEARCH	ERS			STUDEN	TS
Center Name	Faculty ¹⁶ Scientists	Research Staff	Post Docs	Admin- istrative	PhD	Masters	Under- graduate
Materials Data Science for Reliability and Degradation	10	0	1	1	2	2	6
Membrane Science, Engineering & Technology Center	24	0	4	3	19	3	2
Metamaterials	17	0	0	1	10	0	0
Multi-functional Integrated System Technology	17	6	0	1	17	0	6
Novel High-Voltage/Temperature Materials and Structures	9	2	3	1	12	0	0
Particulate and Surfactant Systems	6	2	0	2	2	0	0
Pervasive Personalized Intelligence	6	0	0	2	8	7	1
Power Management Integration	6	0	0	1	12	1	0
Rational Catalyst Synthesis	15	3	7	2	19	0	4
Research in Storage Systems	9	0	0	1	0	0	1
Research toward Advancing Financial Technologies	17	1	0	3	8	3	3
Resource Recovery and Recycling	6	1	0	2	4	2	1
Robots and Sensors for the Human Well-being	17	1	1	2	8	16	33
Science Center for Marine Fisheries	19	0	0	3	6	6	2
Science of Heterogeneous Additive Printing of 3D Materia	I 23	0	4	4	20	5	4
Science, Management, Applications, Regulation, and Trai	5	0	0	1	2	3	7
Security and Software Engineering Research Center	5	0	0	1	5	2	1
Smart Vehicle Concepts	10	3	1	1	20	2	11
Solar Powered Future	14	0	5	1	14	3	15
Solid-State Green Electric Power Generation and Storage	16	2	3	1	7	0	4
Space, High-Performance, and Resilient Computing	18	1	0	5	34	20	34
Spatiotemporal Thinking, Computing and Application	15	4	4	5	4	2	12
Stream Healthcare In Place	33	18	15	8	5	5	13
Surveillance Research	3	0	0	0	2	1	0
Tire Research	21	0	0	1	17	5	5
Unmanned Aircraft Systems	24	0	0	1	12	13	18
Visual and Decision Informatics	23	4	0	5	23	2	6
Water Equipment and Policy	17	1	4	4	8	6	13
Wheat Genetics	12	4	5	1	1	0	5
Wildfire Interdisciplinary Research Center	13	5	2	2	0	11	6
Wind Energy Science, Technology and Research	18	0	0	3	24	2	0
Wind Hazard and Infrastructure Performance	10	6	0	3	10	0	0
Wood-Based Composites	16	5	0	1	9	4	1
Grand Mean	15.64	2.36	2.19	2.36	13.28	4.86	6.58
Grand Sum	1251	189	175	189	1062	389	526

*Reports sorted Alphabetically by Center.

Table 6: 2021-2022 CENTER DIRECTOR DESCRIPTOR

*Includes only primary center director	TIME ALLOCATION ¹⁷					
Center Name	Center Administration	Other	Research	Teaching	Other	
Accelerated Real Time Analytics	25	5	40	20	10	
Advance the Science of Exploration to Reclamation in Min	25	10	40	25	0	
Advanced Design and Man of Integrated Microfluidics	10	25	40	20	5	
Advanced Electronics through Machine Learning	15	5	45	25	10	
Advanced Forestry Systems	25	25	20	20	10	
Advanced Knowledge Enablement	10	5	40	25	20	
Advanced Mammalian Biomanufacturing Innovation Cente	20	0	50	30	0	
Advanced Non-Ferrous Structural Alloys	15	15	40	20	10	
Advanced Research in Drying	15	40	25	15	5	
Advanced Research in Forensic Science	10	30	20	20	20	
Alternative Sustainable and Intelligent Computing	30	5	35	25	5	
Arthropod Management Technologies	30	10	60	0	0	
Atomically Thin Multifunctional Coatings	10	10	40	20	20	
Big Learning	8	0	42	40	10	
Bioanalytic Metrology	10	10	55	15	10	
Bioplastics and Biocomposites	10	23	32	22	13	
Broadband Wireless Access and Applications	15	0	50	15	20	
Building Energy Smart Technology	30	5	30	30	5	
Building Reliable Advances and Innovation in Neurotechn	25	35	30	10	0	
Ceramics Composites and Optical Materials Center	15	35	30	10	10	
Cloud & Autonomic Computing	10	35	30	20	5	
Composite and Hybrid Materials Interfacing	25	10	25	25	15	
Computational Biotechnology and Genomic Medicine	15	5	30	20	30	
Cybersecurity Analytics and Automation	10	10	75	0	5	
Dielectrics and Piezoelectrics	15	15	50	18	2	
Disruptive Muscoloskeletal Innovations	5	25	40	20	10	
Efficient Vehicles and Sustainable Transportation System	15	5	50	25	5	
Electromagnetic Compatibility	20	10	40	20	10	
Electronic-Photonic Integrated Circuits for Aerospace	10	30	35	20	5	
Embedded Systems	15	15	40	15	15	
Energy Harvesting Materials and Systems	20	15	45	20	0	
Energy-Smart Electronic Systems	10	50	35	0	5	
Environmental Sustainability through Insect Farming	10	5	30	10	45	
Fiber-Wireless Integration and Networking	25	25	25	10	15	
Freeform Optics	30	5	40	20	5	
Geomechanics and Mitigation of Geohazards	4	13	23	60	0	
Grid-Connected Advanced Power Electronic Systems	15	35	30	10	10	
Hardware and Embedded Systems Security and Trust	10	5	50	25	10	
Health Organization Transformation	10	10	40	30	10	
High Pressure Plasma Energy, Agriculture, and Biomedic	10	10	40	40	0	
High-Frequency Electronics and Circuits for Communicati	40	0	30	20	10	
Identification Technology Research	25	0	40	25	10	
Infrastructure Trustworthiness in Energy Systems	3	87	10	0	0	
Innovations in Structural Integrity Assurance	20	20	60	0	0	
Integration of Composites into Infrastructure	13	6	45	30	6	
iPerform - I/UCRC for Assistive Technologies to Enhance	10	30	40	20	0	
	15	20	40		5	
Manufacturing and Materials Joining Innovation Center				<u>15</u> 35		
Materials Data Science for Reliability and Degradation	15	10	35	30	5	

* Report sorted Alphabetically by Center

*Includes only primary center director	TIME ALLOCATION 17						
Center Name	Center Administration	Other Administration	Research	Teaching	Other		
Membrane Science, Engineering & Technology Center	10	5	50	30	5		
Metamaterials	10	30	35	15	10		
Multi-functional Integrated System Technology	8	77	5	5	5		
Novel High-Voltage/Temperature Materials and Structures	10	5	40	45	0		
Particulate and Surfactant Systems	8	2	52	37	1		
Pervasive Personalized Intelligence	30	10	30	20	10		
Power Management Integration	17	5	33	40	5		
Rational Catalyst Synthesis	30	10	30	20	10		
Research in Storage Systems	15	20	25	30	10		
Research toward Advancing Financial Technologies	30	10	0	20	40		
Resource Recovery and Recycling	15	15	40	20	10		
Robots and Sensors for the Human Well-being	15	15	60	0	10		
Science Center for Marine Fisheries	35	5	45	10	5		
Science of Heterogeneous Additive Printing of 3D Materia	15	7	40	30	8		
Science, Management, Applications, Regulation, and Trai	10	0	45	25	20		
Security and Software Engineering Research Center	20	0	20	40	20		
Smart Vehicle Concepts	25	0	40	20	15		
Solar Powered Future	20	15	35	30	0		
Solid-State Green Electric Power Generation and Storage	20	20	30	20	10		
Space, High-Performance, and Resilient Computing	20	40	25	15	0		
Spatiotemporal Thinking, Computing and Application	20	10	40	20	10		
Stream Healthcare In Place	40	10	40	0	10		
Surveillance Research	5	50	25	20	0		
Tire Research	15	10	55	20	0		
Jnmanned Aircraft Systems	15	15	30	30	10		
visual and Decision Informatics	25	5	35	20	15		
Nater Equipment and Policy	20	5	45	25	5		
Wheat Genetics	10	10	60	10	10		
Nildfire Interdisciplinary Research Center	45	15	20	10	10		
Nind Energy Science, Technology and Research	25	40	20	10	5		
Wind Hazard and Infrastructure Performance	25	5	0	0	70		
Wood-Based Composites	5	10	50	30	5		
Grand Mean	17.39	15.94	36.78	20.34	9.56		

Table 7: 2021-2022 CENTER OUTCOMES

S	STUDENTS RECEIVING DEGREE ¹⁸ STUDENTS HIRED BY MEMBERS ¹⁹ PROJECTS ²⁰					PUBLICATIONS ²¹				
Center Name:	BS Grad	d MS Grad	PhD Grad	BS Hired*	MS Hired*	PhD Hired*		w/ Ctr Research	w/ IAB Members	Present.
Accelerated Real Time Analytics	0	7	18	0	2	2	20	49	13	40
Advance the Science of Exploration to	Re 2	3	2	0	0	0	17	30	19	26
Advanced Design and Man of Integrate	ed 15	2	9	0	0	0	7	10	2	20
Advanced Electronics through Machine		0	0	0	0	0	7	23	5	33
Advanced Forestry Systems	7	12	6	4	3	2	22	46	12	87
Advanced Knowledge Enablement	7	6	3	13	3	1	7	8	4	14
Advanced Mammalian Biomanufacturir	ngl 0	1	5	0	0	3	29	9	1	16
Advanced Non-Ferrous Structural Alloy	=	6	7	2	2	4	26	48	9	100
Advanced Research in Drying	1	1	1	0	0	0	12	6	0	17
Advanced Research in Forensic Science	ce 7	4	4	0	0	1	11	9	2	69
Alternative Sustainable and Intelligent		1	8	0	0	0	11	31	10	26
Arthropod Management Technologies	1	0	1	0	0	0	10	12	0	7
Atomically Thin Multifunctional Coating	s 1	2	10	0	0	0	8	1	0	24
Big Learning	0	0	1	0	0	1	12	34	12	23
Bioanalytic Metrology	1	2	19	0	0	4	20	10	1	33
Bioplastics and Biocomposites	10	4	8	4	0	3	11	8	1	7
Broadband Wireless Access and Applic		3	7	3	3	3	11	22	8	19
Building Energy Smart Technology	0	0	0	0	0	0	7	0	0	0
Building Reliable Advances and Innova		0	3	0	0	0	0	12	2	10
Ceramics Composites and Optical Mate		2	0	0	1	0	12	5	3	19
Cloud & Autonomic Computing	4	14	4	1	2	0	9	20	5	22
Composite and Hybrid Materials Interfa	•	1	0	0	0	0	7	1	0	3
Computational Biotechnology and Gen		2	9	0	0	4	4	28	2	16
Cybersecurity Analytics and Automatio		5	0	0	0	0	6	23	0	21
Dielectrics and Piezoelectrics	1	1	1	0	0	0	20	28	4	62
Disruptive Muscoloskeletal Innovations		2	2	0	0	0	14	0	0	9
Efficient Vehicles and Sustainable Trar		3	8	0	0	0	11	18	5	34
Electromagnetic Compatibility	3	4	9	5	1	4	10	66	27	36
Electronic-Photonic Integrated Circuits		0	1	0	0	0	4	6	0	7
Embedded Systems	0	1	4	0	0	0	7	3	0	2
Energy Harvesting Materials and Systems	-	5	7	0	2	1	0	54	3	33
Energy-Smart Electronic Systems	7	10	8	0	1	5	11	38	24	35
Environmental Sustainability through In	ise 0	0	0	0	0	0	5	1	1	14
Fiber-Wireless Integration and Network		0	0	0	0	0	0	0	0	0
Freeform Optics	4	3	4	0	2	2	16	16	4	50
Geomechanics and Mitigation of Geoha		0	4	0	0	0	7	10	6	38
Geomechanics and Miligation of Geome Grid-Connected Advanced Power Elect		9	9	0	0	1	10	7	3	42
Hardware and Embedded Systems Sec		9 7	9	1	2	2	22	27	3	68
Health Organization Transformation	12	3	3	0	0	0		13	2	20
Health Organization Transformation High Pressure Plasma Energy, Agricult		2	4	0	0	0	0	13	<u> </u>	20
High-Frequency Electronics and Circuit					-				-	
	tsf 0 11	<u>1</u>	2 12	0	0	0	5 20	0 50	0	<u>11</u>
dentification Technology Research		9				-				63 2
nfrastructure Trustworthiness in Energ	÷		0	0	0	0	5	2	0	
nnovations in Structural Integrity Assur		0	0	0	0	0	5	0	0	10
ntegration of Composites into Infrastru		4	7	0	2	2	17	20	10	54
Perform - I/UCRC for Assistive Techn		1	4	3	0	0	2	7	1	3
Manufacturing and Materials Joining In	no 8	12	11	0	3	5	32	22	11	54

* Report sorted by Alphabetically by Center * See Table 8 for additional alumni career outcomes.

٤	STUDEN	TS RECEIV	ING DEGREE	⁸ STUDENTS	HIRED BY	MEMBERS ¹⁹	PROJECTS20	PL	JBLICATIO	NS ²¹
								w/ Ctr	w/ IAB	
Center Name:	BS G	rad MS Gi	ad PhD Grad	BS Hired *	MS Hired	* PhD Hired*		Research	Members	Present.
Materials Data Science for Reliability a	nd 2	0	0	0	0	0	4	4	0	10
Membrane Science, Engineering & Te	chn 2	0	8	0	0	2	14	27	16	28
Metamaterials	0	0	2	0	0	1	9	13	19	9
Multi-functional Integrated System Tec		0	2	0	0	0	9	12	2	6
Novel High-Voltage/Temperature Mate	erial O	0	7	0	0	2	6	31	2	5
Particulate and Surfactant Systems	0	0	2	0	0	0	0	7	0	15
Pervasive Personalized Intelligence	0	6	0	0	0	0	6	6	1	7
Power Management Integration	0	1	2	0	0	1	12	7	0	13
Rational Catalyst Synthesis	3	0	10	0	0	1	11	14	2	24
Research in Storage Systems	0	0	3	0	0	0	11	7	0	11
Research toward Advancing Financial	Tec 0	0	0	0	0	0	7	0	0	0
Resource Recovery and Recycling	0	1	3	0	0	1	6	7	0	21
Robots and Sensors for the Human We	ell-b 12	2 7	0	0	0	0	12	13	1	10
Science Center for Marine Fisheries	0	0	0	0	0	0	26	3	0	14
Science of Heterogeneous Additive Pri	intin O	0	2	0	0	0	10	5	0	11
Science, Management, Applications, R	Reg 1	0	0	0	0	0	7	4	4	8
Security and Software Engineering Re	sea 1	2	5	0	0	5	5	2	0	9
Smart Vehicle Concepts	3	2	6	0	1	0	15	42	3	45
Solar Powered Future	0	1	8	0	0	4	16	0	0	15
Solid-State Green Electric Power Gene	erati 1	0	1	1	0	0	6	11	6	9
Space, High-Performance, and Resilie	nt 19	9 10	6	6	5	3	5	32	5	15
Spatiotemporal Thinking, Computing a	nd 5	2	2	1	1	1	11	30	9	34
Stream Healthcare In Place	2	5	4	0	0	0	11	53	2	76
Surveillance Research	0	1	1	0	0	0	1	6	0	5
Tire Research	1	2	1	1	0	1	13	6	0	0
Unmanned Aircraft Systems	7	8	7	0	1	2	18	15	2	11
Visual and Decision Informatics	3		13	3	0	0	8	50	1	30
Water Equipment and Policy	5	2	1	0	1	0	9	10	0	2
Wheat Genetics	4	0	2	0	0	1	8	2	0	4
Wildfire Interdisciplinary Research Cer			0	0	0	0	6	0	0	0
Wind Energy Science, Technology and	1 R 0	1	1	0	0	1	10	9	0	16
Wind Hazard and Infrastructure Perform	ma O	1	2	0	0	0	6	6	3	10
Wood-Based Composites	0	2	1	0	2	0	17	7	0	5
Grand Me				0.60	0.51	0.95	10.39	16.10	3.69	22.49
Grand Su	m 22	4 222	336	48	41	76	831	1288	295	1799

Alumni Outcome	# of Centers	% of Centers
Hired by Industry Members	38	48%
Hired by Governmental Members	18	23%
Hired by Non-Member Industry	58	73%
Hired by Non-Member Governmental Agency	22	28%
Faculty Positions	18	23%
Postdoc Positions	32	40%
Continuing Education	47	59%
Unknown/Not Reported	0	0%

Table 8a: Centers Reporting One or More Alumni Career Outcome Last Fiscal Year

Table 8b: Total Number and Means of Alumni Career Outcomes Last Fiscal Year

Alumni Outcome	Total for All Centers	Mean for All Centers
Hired by Industry Members	133	1.66
Hired by Government Members	32	0.40
Hired by Non-Member Industry	363	4.54
Hired by Non-Member Governmental Agency	36	0.45
Faculty Positions	35	0.44
Postdoc Positions	64	0.80
Continuing Education	129	1.61
Unknown/Not Reported	0	0.00

Table 9a: Centers Reporting One or More Intellectual Property and Commercialization Event Last Fiscal Year

Intellectual Property Event	# of Centers	% of Centers
Invention Disclosures	28	35%
Patent Applications	29	36%
Patents Granted/Derived	17	21%
Licensing Agreements	11	14%
Royalties Realized	3	4%
Software Copyrights	3	4%
Spinoff Companies Formed	6	8%

Table 9b: Total Number and Means of Intellectual Property and Commercialization Events Last Fiscal Year

Intellectual Property Event	Total for All Centers	Mean for All Centers
Invention Disclosures	60	0.75
Patent Applications	75	0.94
Patents Granted/Derived	28	0.35
Licensing Agreements	18	0.23
Royalties Realized	7	0.09
Software Copyrights	8	0.10
Spinoff Companies Formed	8	0.10

APPENDIX

FOOTNOTES AND SPECIAL CONSIDERATIONS

Footnotes appear on top of columns and/or at end of rows for each Table and are described in this Appendix.

- 1) All averages and sums <u>exclude</u> missing data. With the exception of percentages, data from multi-university centers has been aggregated across universities; percentages represent averages for the reporting universities.
- This report includes only data on Centers which were actively funded or under a no cost extension in the NSF IUCRC Program during the 2020-2021 fiscal year.
- On Table 1, "YEAR FUNDED" indicates the year NSF gave the center the operating grant under which it was originally established as an IUCRC.
- 4) On Table 2, "PROGRAM INCOME" refers to the total funding provided to the Center by the following sources: Member Fees,⁶ and Additional Industry.⁷
- 5) On Table 2, "NSF/IUCRC" refers to the total funding provided by the IUCRC program, including operating grant, supplements, evaluator support, etc.
- 6) On Table 2, "MEMBER FEES" refers to the total funding collected by a center from membership fees, including MIPRs covering membership support.
- 7) On Table 2, "ADDITIONAL INDUSTRY" refers to additional member funding (e.g., enhancements, donations, etc.) which is applied to the Center as a whole (e.g., income that results in outcomes shared equally by all Center members). This includes additional support provided by members through MIPRs that is above and beyond the membership fee paid.
- 8) "OTHER NSF" refers to funding for the Center provided by other NSF groups o divisions. Neither of these categories includes money transferred through NSF from other Federal Agencies (MIPRs).
- 9) On Table 2, "STATE TOTAL" refers to the funding provided by state government and/or an agency or program funded by state government.
- 10) On Table 2, "OTHER FEDERAL AGENCY" refers to funding for the Center provided by other Federal funding sources, but does NOT include funding from NSF.
- 11) On Table 2, "OTHER NON-FEDERAL AGENCY" refers to funding for the Center provided by other non-Federal funding sources, foundations, etc.
- On Table 3, "CAPITAL AND IN-KIND CONTRIBUTIONS" refers to in-kind donations, and capital support for items of value over \$25,000 and includes equipment, facilities, personnel, and software.
- 13) On Table 3, "ADMIN. BUDGET (%)" refers to the estimated percentage of the primary site's direct operating budget allocated to administration (e.g., administrative salaries, travel, telephone).
- 14) On Table 4, "LIFETIME MEMBERSHIPS" are calculated at the membership level, not the organization level. Lifetime "starting" is the sum of all original memberships. Lifetime "new" is the sum of all original memberships plus all reported new memberships. Lifetime "Left" is the sum of all terminated memberships. Members who leave and then rejoin a center are counted for every addition and every departure.
- 15) On Table 4, "FEES" are broken down into primary, secondary, and tertiary (the latter two may represent variable membership fees).
- 16) On Table 5, "FACULTY SCIENTISTS" includes the Center Director(s) and Faculty Researchers.
- 17) On Table 6, "TIME ALLOCATION" refers to percentage allocation of the primary site director's full-time equivalent for budgetary purposes.
- 18) On Table 7, "STUDENTS RECEIVING DEGREE" refers to the number of Center trained Ph.D./M.D.'s, M.S.'s, and B.A./B.S.'s that received a degree during the reporting period.
- 19) On Table 7, "STUDENTS HIRED BY MEMBERS" refers to the number of Ph.D./M.D.'s, M.S.'s, and B.A./B.S.'s that were hired by industry and government members during the reporting period. Additional alumni career outcomes are reported in Table 8.
- 20) On Table 7, "PROJECTS" refers to the number of research projects funded by a) IAB member fees, b) NSF IUCRC support, or c) any other support that would not have been obtained without the existence of the Center AND the results of which are shared with ALL center members. Does NOT include project that are not shared with all Center's members. Does NOT include projects carried out by Center affiliated researchers which are unrelated to the Center AND/OR the results of which are not shared with Center members.
- 21) On Table 7, "PUBLICATIONS" refers to the publications in the open literature the Center researchers produced based on Center research including publications reported that have a Center member as an author.

Additional Notes: Starting with FY2016 we are no longer capturing university contributions nor other cash support. Because we are no longer capturing these funding sources, the total funding for the center is not comparable to reports produced prior to FY2016.